博客
关于我
sdnu1085.爬楼梯再加强版(矩阵快速幂)
阅读量:273 次
发布时间:2019-03-01

本文共 1337 字,大约阅读时间需要 4 分钟。

Description

WZ是个蛋痛的人,总是喜欢琢磨蛋痛的事,比如他最近想知道上楼梯总共有多少种方式。已知他一步可以迈一阶、两阶或者三阶,现在给你楼梯的阶数,让你计算总共有多少种方式。

Input

输入有多组数据,每组数据占一行,表示楼梯的阶数。(1<=N<=100,000,000,000)

Output

对于每组数据,输出一行,表示上楼方式的总数 % 1000000007。

Sample Input

12

Sample Output

12

矩阵快速幂 

#include
using namespace std;typedef long long ll;const int N=3;const int MOD=1000000007;struct mat{ ll a[N][N];};mat mat_mul(mat x,mat y){ mat res; memset(res.a,0,sizeof(res.a)); for(int i=0; i<3; i++) for(int j=0; j<3; j++) for(int k=0; k<3; k++) res.a[i][j]=(res.a[i][j]+(x.a[i][k]*y.a[k][j])%MOD)%MOD; return res;}long long mat_pow(ll n){ mat c,res; memset(c.a,0,sizeof(c.a)); c.a[0][0]=c.a[0][1]=c.a[0][2]=1; c.a[1][0]=1; c.a[2][1]=1; memset(res.a,0,sizeof(res.a)); for(int i=0; i<3; i++) res.a[i][i]=1; while(n) { if(n&1) res=mat_mul(res,c); c=mat_mul(c,c); n=n>>1; } return ((4*res.a[0][0])%MOD+(2*res.a[0][1])%MOD+res.a[0][2]%MOD)%MOD;///4 2 1分别是前三项}int main(){ long long n; while(scanf("%lld",&n)!=EOF) { if(n==1) cout<<1<<'\n'; else if(n==2) cout<<2<<'\n'; else if(n==3) cout<<4<<'\n'; else { long long ans=mat_pow(n-3); cout<
<<'\n'; } } return 0;}

 

转载地址:http://usio.baihongyu.com/

你可能感兴趣的文章
NB-IOT使用LWM2M移动onenet基础通信套件对接之APN设置
查看>>
NBear简介与使用图解
查看>>
Vue过滤器_使用过滤器进行数据格式化操作---vue工作笔记0015
查看>>
Ncast盈可视 高清智能录播系统 IPSetup.php信息泄露+RCE漏洞复现(CVE-2024-0305)
查看>>
NCNN中的模型量化解决方案:源码阅读和原理解析
查看>>
NCNN源码学习(1):Mat详解
查看>>
nc命令详解
查看>>
NC综合漏洞利用工具
查看>>
ndarray 比 recarray 访问快吗?
查看>>
ndk-cmake
查看>>
NdkBootPicker 使用与安装指南
查看>>
ndk特定版本下载
查看>>
NDK编译错误expected specifier-qualifier-list before...
查看>>
Neat Stuff to Do in List Controls Using Custom Draw
查看>>
Necurs僵尸网络攻击美国金融机构 利用Trickbot银行木马窃取账户信息和欺诈
查看>>
Needle in a haystack: efficient storage of billions of photos 【转】
查看>>
NeHe OpenGL教程 07 纹理过滤、应用光照
查看>>
NeHe OpenGL教程 第四十四课:3D光晕
查看>>
Neighbor2Neighbor 开源项目教程
查看>>
neo4j图形数据库Java应用
查看>>